Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(15): 8180-8193, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38581394

RESUMEN

Ni-rich layered materials Li[NixCoyMnzAl1-x-y-z]O2 (x > 0.8) are regarded as the competitive cathode for practical applications in lithium-ion batteries owing to the large discharging capacity. Nevertheless, the strong oxidation activity, the poor structure, and the thermal stability at the electrode-electrolyte interface would lead to much trouble, for example, inferior electrochemical properties and acute safety issues. To ameliorate the above problems, this work reports a strategy for the double modification of F- doping and LiNbO3 covering in LiNi0.88Co0.06Mn0.03Al0.03O2 cathode via using high-temperature calcining and ball-milling technology. As a result, the cathodes after F- doping and LiNbO3 covering not only demonstrate a more stabilized crystal structure and particle interface but also reduce the release of high-activity oxygen species to ameliorate the thermal runaway. The electrochemical tests show that the LiNbO3-F--modified cathode displays a superior rate capability of 159.3 mAh g-1 at 10.0 C and has the predominant capability retention of 92.1% in the 200th cycle at 25 °C, much superior than those (125.4 mAh g-1 and 84.0%) of bare cathode. Thus, the F- doped and LiNbO3-coated Ni-rich oxides could be a promising cathode to realize the high capacity and a stabilized interface.

2.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544393

RESUMEN

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Asunto(s)
Glioma , Glutamato-Amoníaco Ligasa , Imagen por Resonancia Magnética , Neovascularización Patológica , Animales , Glioma/diagnóstico por imagen , Glioma/irrigación sanguínea , Glioma/tratamiento farmacológico , Neovascularización Patológica/diagnóstico por imagen , Ratas , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Masculino , Línea Celular Tumoral
3.
Br J Radiol ; 97(1157): 980-992, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38547402

RESUMEN

OBJECTIVES: To develop a mapping model between skin surface motion and internal tumour motion and deformation using end-of-exhalation (EOE) and end-of-inhalation (EOI) 3D CT images for tracking lung tumours during respiration. METHODS: Before treatment, skin and tumour surfaces were segmented and reconstructed from the EOE and the EOI 3D CT images. A non-rigid registration algorithm was used to register the EOE skin and tumour surfaces to the EOI, resulting in a displacement vector field that was then used to construct a mapping model. During treatment, the EOE skin surface was registered to the real-time, yielding a real-time skin surface displacement vector field. Using the mapping model generated, the input of a real-time skin surface can be used to calculate the real-time tumour surface. The proposed method was validated with and without simulated noise on 4D CT images from 15 patients at Léon Bérard Cancer Center and the 4D-lung dataset. RESULTS: The average centre position error, dice similarity coefficient (DSC), 95%-Hausdorff distance and mean distance to agreement of the tumour surfaces were 1.29 mm, 0.924, 2.76 mm, and 1.13 mm without simulated noise, respectively. With simulated noise, these values were 1.33 mm, 0.920, 2.79 mm, and 1.15 mm, respectively. CONCLUSIONS: A patient-specific model was proposed and validated that was constructed using only EOE and EOI 3D CT images and real-time skin surface images to predict internal tumour motion and deformation during respiratory motion. ADVANCES IN KNOWLEDGE: The proposed method achieves comparable accuracy to state-of-the-art methods with fewer pre-treatment planning CT images, which holds potential for application in precise image-guided radiation therapy.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Piel , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada Cuatridimensional/métodos , Piel/diagnóstico por imagen , Inhalación , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Espiración/fisiología , Imagenología Tridimensional/métodos , Respiración , Tomografía Computarizada por Rayos X/métodos
4.
Environ Sci Pollut Res Int ; 31(15): 22630-22644, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38413523

RESUMEN

Groundwater environments are complex, and traditional advanced oxidation technologies mainly based on free radicals have limitations such as poor selectivity and low interference resistance, making it difficult to efficiently degrade target pollutants in groundwater. Therefore, we developed a sludge-based biochar-supported FeMg-layered double hydroxide catalyst (BC@FeMg-LDH) for the catalytic degradation of 2, 4-dichlorophenol (2, 4-DCP) using persulfate (PDS) as an oxidant. The removal efficiency of the catalyst exceeded 95%, showing high oxidation activity in a wide pH range while being almost unaffected by reducing substances and ions in the environment. Meanwhile, under neutral conditions, the leaching of metal ions from BC@FeMg-LDH was minimal, thereby eliminating the risk of secondary pollution. According to quenching experiments and electron paramagnetic resonance spectroscopy, the main active species during BC@FeMg-LDH/PDS degradation of 2, 4-DCP is 1O2, indicating a non-radical reaction mechanism dominated by 1O2. Characterization techniques, including X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, revealed that the carbonyl (C = O) and metal hydroxyl (M-OH) groups on the material surface were the main reactive sites mediating 1O2 generation. The 1O2 generation mechanism during the reaction involved ketone-like activation of carbonyl groups on the biochar surface and complexation of hydroxyl groups on the material surface with PDS, resulting in the formation of O2·- and further generation of 1O2. 1O2 exhibited high selectivity toward electron-rich organic compounds such as 2, 4-DCP and demonstrated strong interference resistance in complex groundwater environments. Therefore, BC@FeMg-LDH holds promising applications for the remediation of organic-contaminated groundwater.


Asunto(s)
Agua Subterránea , Hidróxidos , Hidróxidos/química , Carbón Orgánico/química , Metales , Fenoles
5.
J Appl Clin Med Phys ; 25(4): e14243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38229472

RESUMEN

PURPOSE: To develop a radiotherapy positioning system based on Point Cloud Registration (PCR) and Augmented Reality (AR), and to verify its feasibility. METHODS: The optimal steps of PCR were investigated, and virtual positioning experiments were designed to evaluate its accuracy and speed. AR was implemented by Unity 3D and Vuforia for initial position correction, and PCR for precision registration, to achieve the proposed radiotherapy positioning system. Feasibility of the proposed system was evaluated through phantom positioning tests as well as real human positioning tests. Real human tests involved breath-holding positioning and free-breathing positioning tests. Evaluation metrics included 6 Degree of Freedom (DOF) deviations and Distance (D) errors. Additionally, the interaction between CBCT and the proposed system was envisaged through CBCT and optical cross-source PCR. RESULTS: Point-to-plane iterative Closest Point (ICP), statistical filtering, uniform down-sampling, and optimal sampling ratio were determined for PCR procedure. In virtual positioning tests, a single registration took only 0.111 s, and the average D error for 15 patients was 0.015 ± 0.029 mm., Errors of phantom tests were at the sub-millimeter level, with an average D error of 0.6 ± 0.2 mm. In the real human positioning tests, the average accuracy of breath-holding positioning was still at the sub-millimeter level, where the errors of X, Y and Z axes were 0.59 ± 0.12 mm, 0.54 ± 0.12 mm, and 0.52 ± 0.09 mm, and the average D error was 0.96 ± 0.22 mm. In the free-breathing positioning, the average errors in X, Y, and Z axes were still less than 1 mm. Although the mean D error was 1.93 ± 0.36 mm, it still falls within a clinically acceptable error margin. CONCLUSION: The AR and PCR-guided radiotherapy positioning system enables markerless, radiation-free and high-accuracy positioning, which is feasible in real-world scenarios.


Asunto(s)
Realidad Aumentada , Humanos , Imagenología Tridimensional/métodos , Estudios de Factibilidad , Fantasmas de Imagen
6.
Heliyon ; 9(7): e18011, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483824

RESUMEN

Purpose: To identify new novel biomarkers for predicting the efficacy of concurrent chemoradiotherapy(CCRT) in cervical squamous cell carcinoma(CESC). Methods: Gene expression datasets GSE56363, GSE5787, and GSE168009 were analyzed to identify candidate genes to predict the efficacy of CCRT in CESC. Single-cell RNA sequencing (scRNA-seq) data from GSE168652 and CESC patients in The Cancer Genome Atlas(TCGA) were systematically analyzed to explore possible molecular mechanisms. Kaplan-Meier evaluated the correlation between LUM (Lumican) and prognostic significance. The expression of LUM protein in biopsy tissues before CCRT was detected by immunohistochemistry in 15 CESC patients. Results: LUM mRNA levels were significantly upregulated in nonresponders of CESC.patients receiving CCRT and positively correlated with poor therapeutic effect. Furthermore, high expression of LUM influenced the immune microenvironment in CESC patient-derived organoids treated with CCRT. LUM overexpression in CESC cells induced resistance to CCRT, potentially via immune landscape modulation. Gene Set Enrichment Analysis (GSEA) revealed that possible mechanisms underlying resistance to CCRT might involve the PARs and IL1 signaling pathway affecting the immune landscape. Conclusions: High LUM expression is correlated with poor efficacy in CESC patients receiving CCRT, possibly through the PARs and IL1 signaling pathway affecting the immune landscape.

7.
Langmuir ; 39(13): 4662-4675, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36854144

RESUMEN

Mn-based cathode material Li1.20Mn0.52Ni0.20Co0.08O2 was proposed and ameliorated by surface-coating poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and doping Ga3+. X-ray diffraction and high-resolution transmission electron microscopy studies revealed that part of Ga3+ replacing the Ni site could reduce the Li+/Ni2+ mixing by forming a well-ordered layered structure and a homogeneous coating layer of PEDOT:PSS is covered on the surface of Li1.20Mn0.52Ni0.19Co0.08Ga0.01O2. The results of the electrochemical studies demonstrated the higher initial charging-discharging Coulombic efficiency, and outstanding rate capabilities and cyclic performance were obtained for the PEDOT:PSS-covered and Ga3+-doped samples. Especially, 2 wt % PEDOT:PSS-coated Li1.20Mn0.52Ni0.19Co0.08Ga0.01O2 delivered 38.3 mAh g-1, which is larger than the pristine cathode at a 5C high rate. Meanwhile, it could retain 189.6 mAh g-1 (90.3% of its initial discharge capacity at 45 °C) after 300 cycles with a 1C rate, while the pristine cathode only delivered 149.7 mAh g-1 with 80.7% cycling retention left. The results strongly suggested that such PEDOT:PSS-coated and Ga3+-doped Mn-based layered structure materials demonstrated high potential as a cathode candidate especially for high-energy applications.

8.
J Nanobiotechnology ; 21(1): 9, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609374

RESUMEN

As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.


Asunto(s)
Medios de Contraste , Neoplasias , Masculino , Humanos , Proteínas Proto-Oncogénicas c-sis , Neoplasias/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Dióxido de Silicio , Microambiente Tumoral
9.
J Colloid Interface Sci ; 634: 1005-1013, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36571854

RESUMEN

The direct conversion of CO2 into reusable CH4 fuel by solar energy can effectively solve the problems of energy crisis and carbon emissions. However, the challenge of photocatalytic CO2 reduction to produce CH4 is still low conversion efficiency and poor selectivity. Here, surface brominated carbon nitride (named CNBr) is fabricated for stable and efficient photocatalytic CO2 reduction to produce CH4 with a rate of 16.68 µmol h-1 g-1 (70.27 % selectivity). Br atom in CNBr can substitute the N atom in the tri-s-triazine unites, which promotes local charge separation, narrows band gap and deepens the conduction band of CNBr. Benefiting from Br as active sites, CO2 can be enriched on the catalyst surface, and localized photogenerated electrons can activate the adsorbed CO2 to form CH4 through subsequent hydrogenation. Density functional theory results suggest that Br doping can effectively reduce the energy barrier of the rate-limiting step, accelerate the reaction, and induce the formation of *CHO, thereby improving the selectivity of CH4. This work reveals that surface modification can simultaneously increase the activation site of CO2 adsorption activation, enhance light absorption and accelerate charge, laying a solid foundation for the future design of carbon nitride based photocatalyst with high performance.

10.
Proc Natl Acad Sci U S A ; 119(45): e2211228119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322742

RESUMEN

Magnetic targeting is one of the most promising approaches for improving the targeting efficiency by which magnetic drug carriers are directed using external magnetic fields to reach their targets. As a natural magnetic nanoparticle (MNP) of biological origin, the magnetosome is a special "organelle" formed by biomineralization in magnetotactic bacteria (MTB) and is essential for MTB magnetic navigation to respond to geomagnetic fields. The magnetic targeting of magnetosomes, however, can be hindered by the aggregation and precipitation of magnetosomes in water and biological fluid environments due to the strong magnetic attraction between particles. In this study, we constructed a magnetosome-like nanoreactor by introducing MTB Mms6 protein into a reverse micelle system. MNPs synthesized by thermal decomposition exhibit the same crystal morphology and magnetism (high saturation magnetization and low coercivity) as natural magnetosomes but have a smaller particle size. The DSPE-mPEG-coated magnetosome-like MNPs exhibit good monodispersion, penetrating the lesion area of a tumor mouse model to achieve magnetic enrichment by an order of magnitude more than in the control groups, demonstrating great prospects for biomedical magnetic targeting applications.


Asunto(s)
Magnetosomas , Magnetospirillum , Nanopartículas , Neoplasias , Ratones , Animales , Proteínas Bacterianas/metabolismo , Magnetosomas/química , Bacterias Gramnegativas/metabolismo , Nanopartículas/química , Campos Magnéticos , Neoplasias/metabolismo , Magnetospirillum/metabolismo
11.
J Mater Chem B ; 10(46): 9613-9621, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36331033

RESUMEN

The FDA-approved iron oxide nanocrystals (IONs), as negative magnetic resonance imaging contrast agents (MRICAs), face challenges because of their low relaxation rate and coherent ferromagnetism. Although research has found that metal doping is an efficient approach to improve the magnetic property and MRI contrast performance of IONs, their systemic mechanism has not been fully explained. Herein, we fabricated a series of transition-metal-doped IONs and systemically explored their sizes, structures, and variation in magnetic properties, revealing the oxygen vacancy-mediated MRI contrast enhancement mechanism of transition-metal-doped IONs. Based on these, we found that Zn-doped IONs possess optimal T2 MRI contrast performance and further investigated their potential to diagnose in vivo orthotopic tumor as a T2 contrast agent. The results indicate that the use of Zn-doped IONs significantly enhances T2-weighted MRI signal intensity of orthotopic prostate tumor with low toxicity, which is beneficial for the accurate diagnosis of orthotopic tumor. Collectively, this work clearly illustrates the mechanism of contrast enhancement of transition-metal-doped IONs and provides a novel paradigm for developing a highly efficient T2 contrast agent.


Asunto(s)
Nanopartículas del Metal , Neoplasias de la Próstata , Elementos de Transición , Humanos , Masculino , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Neoplasias de la Próstata/diagnóstico por imagen , Iones
12.
J Environ Chem Eng ; 10(6): 108697, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36213529

RESUMEN

The sudden outbreak of coronavirus disease (COVID-19) triggered by SARS-CoV-2 infection has created a terrifying situation around the world. The spike protein of SARS-CoV-2 can act as an early biomarker for COVID-19. Therefore, controlling the spread of COVID-19 requires a low-cost, fast-response, and sensitive monitoring technique of spike protein. Herein, a photoelectrochemical (PEC) immunosensor for the detection of spike protein was constructed using the nanobody and an Mn (Ⅱ) modified graphitic carbon nitride (Mn/g-C3N4). The introduction of atomically dispersed Mn (Ⅱ) can accelerate the effective transfer and separation of photogenerated electron-hole pairs, which significantly boosts PEC performance of g-C3N4, thereby improving the detection sensitivity. As a recognition site, nanobody can achieve high-affinity binding to the spike protein, leading to a high sensitivity. The linear detection range of the proposed PEC immunosensor was 75 fg mL-1 to 150 pg mL-1, and the limit of detection was calculated to be 1.22 fg mL-1. This stable and feasible PEC immunosensor would be a promising diagnostic tool for sensitively detecting spike protein of SARS-CoV-2.

13.
ACS Appl Mater Interfaces ; 14(41): 46850-46856, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198114

RESUMEN

Micron-sized magnetic particles (M-MPs) have low toxicity, strong magnetic signals, and long-term retention capability, which are significant advantages for their application in biomedical imaging. Unfortunately, M-MPs are only internalized by few cell types, such as macrophages and phagocytes, and because of this lack of active intracellular delivery, their applications are restricted. The emergence of self-assembled virus-like particles (VLPs) offers a viable approach to drive M-MPs into cells, although the specific mechanism has not been revealed. In this study, we investigated in detail the intracellular pathway of M-MPs mediated by VLPs using a fluorescence co-localization method. The results indicated that the intracellular movement of M-MPs was consistent with the virus infection pathway, specifically caveolae-dependent endocytosis, transportation through microtubules, and accumulation in the endoplasmic reticulum. This study provides experimental support for the active transport of M-MPs into other cell types, thereby further extending their applications.


Asunto(s)
Endocitosis , Virosis , Humanos , Retículo Endoplásmico , Microtúbulos , Fenómenos Magnéticos
14.
Bioresour Technol ; 364: 128036, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36174892

RESUMEN

Lithium battery slurry wastewater was successfully treatedby using basalt fiber (BF) bio-carriers in a biological contact oxidation reactor. This resulted in a significant reduction of COD (93.3 ± 0.5 %) and total nitrogen (77.4 ± 1.0 %) at 12 h of HRT and dissolved oxygen (DO) of 0-1 mg/L. The modified Stover-Kincannon model indicated that the total nitrogen removal rate was 4.462 kg/m3/d in R-BF while the substrate maximum specific reaction rate (qmax) in the Monod model was 0.323 mg-N/mgVSS/d. A stable internal environment was established within the bio-nest. Metataxonomic analysis revealed the presence of denitrification and decarbonization bacteria, combined heterotrophic nitrification-aerobic denitrification bacteria, nitrite-oxidizing bacteria, and ammonia-oxidizing bacteria. Functional analysis displayed changes related to (aerobic)chemoheterotrophy, nitrogen respiration, nitrate reduction, respiration/denitrification of nitrite, and nitrate in R-BF. The study proposes a novel approach to achieve denitrification for the treatment of lithium slurry wastewater at low C/N conditions.

15.
BMC Cancer ; 22(1): 885, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964070

RESUMEN

BACKGROUND: Pyroptosis is a programmed cell death mediated by the gasdermin superfamily, accompanied by inflammatory and immune responses. Exogenously activated pyroptosis is still not well characterized in the tumor microenvironment. Furthermore, whether pyroptosis-related genes (PRGs) in lower-grade glioma (LGG) may be used as a biomarker remains unknown. METHODS: The RNA-Sequencing and clinical data of LGG patients were downloaded from publicly available databases. Bioinformatics approaches were used to analyze the relationship between PRGs and LGG patients' prognosis, clinicopathological features, and immune status. The NMF algorithm was used to differentiate phenotypes, the LASSO regression model was used to construct prognostic signature, and GSEA was used to analyze biological functions and pathways. The expression of the signature genes was verified using qRT-PCR. In addition, the L1000FWD and CMap tools were utilized to screen potential therapeutic drugs or small molecule compounds and validate their effects in glioma cell lines using CCK-8 and colony formation assays. RESULTS: Based on PRGs, we defined two phenotypes with different prognoses. Stepwise regression analysis was carried out to identify the 3 signature genes to construct a pyroptosis-related signature. After that, samples from the training and test cohorts were incorporated into the signature and divided by the median RiskScore value (namely, Risk-H and Risk-L). The signature shows excellent predictive LGG prognostic power in the training and validation cohorts. The prognostic signature accurately stratifies patients according to prognostic differences and has predictive value for immune cell infiltration and immune checkpoint expression. Finally, the inhibitory effect of the small molecule inhibitor fedratinib on the viability and proliferation of various glioma cells was verified using cell biology-related experiments. CONCLUSION: This study developed and validated a novel pyroptosis-related signature, which may assist instruct clinicians to predict the prognosis and immunological status of LGG patients more precisely. Fedratinib was found to be a small molecule inhibitor that significantly inhibits glioma cell viability and proliferation, which provides a new therapeutic strategy for gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , Glioma/patología , Humanos , Pronóstico , Piroptosis/genética , Microambiente Tumoral/genética
16.
ACS Appl Mater Interfaces ; 14(26): 29650-29658, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35735117

RESUMEN

The uncontrolled treatment process and high concentration of intracellular glutathione compromise the therapeutic efficacies of chemodynamic therapy (CDT). Here, iron oxide nanocrystals embedded in N-doped carbon nanosheets (IONCNs) are designed as a near-infrared light-triggered nanozyme for synergistic cascade tumor therapy. The IONCNs can absorb and convert 980 nm light to local heat, which induces the dissolution of iron oxide for generating Fe2+/Fe3+ in a weak acid environment, apart from thermal ablation of cancer cells. The formed Fe2+ takes on the active site for the Fenton reaction. The formed Fe3+ acts as glutathione peroxidase to magnify oxidative stress, improving the antitumor performance. The IONCNs can be used to visually track the treatment process via magnetic resonance imaging. Such IONCNs demonstrate great potential as an exogenously triggered nanozyme via an integrated cascade reaction for imaging-guided synergistic cancer therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Línea Celular Tumoral , Glutatión , Humanos , Peróxido de Hidrógeno , Imagen por Resonancia Magnética , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
17.
BMC Gastroenterol ; 22(1): 211, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35501704

RESUMEN

BACKGROUND: This study aimed to determine the prognostic value of the sarcopenia on the progression free survival (PFS) and overall survival (OS) of esophageal squamous cell cancer (ESCC) patients who received radiotherapy (RT) or chemoradiotherapy (CRT). METHODS: Data on clinicopathological characteristics and nutritional parameters were analyzed and correlated with PFS and OS, retrospectively. Skeletal muscle, subcutaneous, visceral and total fat tissue cross-sectional areas were evaluated on CT images at the midpoint of the 3rd lumbar vertebrae. A total of 213 patients were enrolled in this study. RESULTS: Sarcopenia was significantly associated with subcutaneous fat content. The univariate analysis demonstrated that OS was superior in patients with non-sarcopenia, non-alcohol, NRI ≥ 100, albumin ≥ 40 g/L, TATI > 83.0, SATI > 27.8, VATI > 49, non-anemia, cervical and upper-thoracic ESCC, T stage 1-2, N stage 0-1 and TNM stage I-II. In the multivariate analysis, sarcopenia, albumin, N stage and TNM stage were identified as independent prognostic factors of survival. This study demonstrated that sarcopenia was related to worse PFS and OS in patients with ESCC who received RT or CRT. CONCLUSIONS: Sarcopenia is considered to be a useful predictor in patients with ESCC who received RT or CRT. This study also provided a conceptual basis for further prospective research on the application of the sarcopenia for patients receiving RT or CRT for intermediate- and advanced-stage ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Sarcopenia , Albúminas , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Quimioradioterapia/efectos adversos , Células Epiteliales , Neoplasias Esofágicas/complicaciones , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/terapia , Humanos , Pronóstico , Estudios Retrospectivos , Sarcopenia/diagnóstico por imagen , Sarcopenia/etiología
18.
Biosens Bioelectron ; 206: 114144, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35279464

RESUMEN

Determination of atrazine (ATZ) residues in aquatic environment has important theoretical and practical significance for protecting the ecological environment and ensuring human health. A photoelectrochemical (PEC) aptasensing based on nitrogen deficiency and cyano group simultaneously engineered two-dimensional (2D) carbon nitride (named as DCN) has been proposed for sensitively detecting ATZ. The introduction of nitrogen deficiency can narrow band gap of DCN, leading to positive position of intermediate electronic state, and improving the absorption of visible light. The intermediate electronic state can function as an electron trap to promote the separation and migration of photogenerated carriers. Cyano groups can trap photoinduced electrons and suppress charge recombination. Gas produced by thermal decomposition has a tailoring effect, endowing DCN with 2D ultra-thin structure, which shortens transmission path of carriers. The synergistic effect of the above enhances PEC performance of DCN. The PEC aptasensing exhibited a wide linear range of 1.0 × 10-4 to 1.0 × 103 pM and a low detection limit of 3.33 × 10-5 pM with excellent selectivity, stability, and satisfactory accuracy during detecting real samples. The proposed design of carbon nitride-based materials may provide a better understanding of the relationship between kind of photoactive materials and PEC performance.


Asunto(s)
Aptámeros de Nucleótidos , Atrazina , Técnicas Biosensibles , Grafito , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Grafito/química , Humanos , Límite de Detección , Nitrilos , Nitrógeno/química
19.
Small ; 18(15): e2107422, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35233936

RESUMEN

Cuprous-based nanozymes have demonstrated great potential for cascade chemodynamic therapy (CDT) due to their higher catalytic efficiency and simple reaction conditions. Here, hollow cuprous oxide@nitrogen-doped carbon (HCONC) dual-shell structures are designed as nanozymes for CDT oncotherapy. This HCONC with a size distribution of 130 nm is synthesized by a one-step hydrothermal method using cupric nitrate and dimethyl formamide as precursors. The thin-layer carbon (1.88 nm) of HCONC enhances the water-stability and reduces the systemic toxicity of cuprous oxide nanocrystals. The dissolved Cu+ of HCONC in acid solution induces a Fenton-like reaction and exhibits a fast reaction rate for catalyzing H2 O2 into highly toxic hydroxyl radicals (·OH). Meanwhile, the formed Cu+ consumes oversaturated glutathione (GSH) to avoid its destruction of ROS at the intracellular level. In general, both cellular and animal experiments show that HCONC demonstrates excellent antitumor ability without causing significant systemic toxicity, which may present tremendous potential for clinical cancer therapy.


Asunto(s)
Nanocápsulas , Neoplasias , Animales , Carbono , Línea Celular Tumoral , Cobre , Glutatión/química , Peróxido de Hidrógeno/química , Neoplasias/tratamiento farmacológico , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...